
Repetitive neurocontroller with disturbance dual feedforward
– choosing the right dynamic optimization algorithm

Bartlomiej Ufnalski and Lech M. Grzesiak
WARSAW UNIVERSITY OF TECHNOLOGY
Institute of Control and Industrial Electronics
75 Koszykowa St., Warsaw 00-662, Poland

Phone: +48 22 234-6138
Fax: +48 22 234-6023

Email: {bartlomiej.ufnalski, lech.grzesiak}@ee.pw.edu.pl
URL: http://www.ee.pw.edu.pl

Acknowledgments
The research was partially supported by the statutory fund of Electrical Drive Division within the
Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of
Technology, Poland.

Keywords
«repetitive control», «iterative learning control», «neurocontroller», «sine wave converter», «repetitive
disturbance rejection», «dynamic optimization problem», «disturbance dual feedforward», «training
algorithm», «non-local update rule», «global update rule»

Abstract
The paper presents a recently developed repetitive neurocontroller (RNC) that does not require additional
filtering and/or forgetting to robustify it, i.e. to circumvent the long horizon stability issue present in
the classic iterative learning control (ILC) scheme. Initially, the Levenberg–Marquardt (L–M) error
backpropagation (BP) algorithm was used as a DOP(dynamic optimization problem)-capable search
mechanism. At that time the choice of the training algorithm was made based on the frequently reported
effectiveness of the L–M method in static optimization problems. However, there is an abundance of
neural network trainingmethods characterized, e.g., by different convergence rates, computational burden,
noise sensitivity, etc. The performance of a particular optimization method is always problem specific.
The case study of a constant-amplitude constant-frequency (CACF) voltage-source inverter (VSI) with an
LC output filter is analysed here and some recommendations regarding the trade-off between convergence
rate and computational complexity are made. The robustness to a measurement noise is also tested. The
comparison is based on the results of numerical experiments. A couple of algorithms is then suggested
for real-time implementation.

Introduction
Repetitive process control has gained noticeable attention during the last decade. This is mainly due to
the constant pursuit of developing control systems characterized by nearly perfect reference tracking and
disturbance rejection capabilities. Theoretically, it is possible to obtain such a perfect control signal for
repetitive process by introducing the integral action in the pass to pass direction (here the k-direction):

u (p, k) = u (p, k − 1) + kRCe (p, k − 1) , (1)

where u denotes the control signal, e is the control error, kRC is the controller gain, k is the iteration (pass,
trial, cycle) index, p is the time index along the pass (1 ≤ p ≤ α, where α is the pass length). In practice,
the formula (1) has to be altered to make the system stable in the long-time horizon. A majority of those
modifications can be represented as special cases of

u (p, k) = Q
(
z−1

)
u (p, k − 1) + kRCL

(
z−1

)
e (p, k − 1) , (2)



Single-phase VSI

LC filter

uC

PWM

      

m

uC
ref

iL
m

k11

k12

uC
m

k10

Full-state feedback (FSF)
[to increase damping]

Reference feedforward (RFF)
uC

ref

-
-

iload
m

k13

Disturbance feedforward (pDFF)

uFFNN 

Load
iload

uPWM

uVSI
uC

      

FFNN-based repetitive controller
operating in the k-direction

      

      

DC voltage 
power source

Non-repetitive part of the controller 
operating in the p-direction

w(1)

unonRC

iload
m

iload
m

Memory of 
α previous 

samples

uTBG

vn 

w(2)

Cost function:                                                                                          .

Optimization algorithm: trainlm, trainrp, traincgp, trainoss, trainbfg, etc.
kDFF path

1

k1

0SRC

Time-Base
Generator

Fig. 1: Schematic diagram of the proposed repetitive neurocontrol system with a disturbance dual feedforward path
(the block Load depicts an exemplary diode rectifier).

where Q and L denote filters (in some approaches reduced to a single gain). These filters can be designed
as non-causal ones and it is required to make Q of zero-phase-shift type. Some common approaches
include but are not limited to

a) Q = 1 − γ and L = 1, where γ ∈ (0, 1) is the forgetting factor,
b) Q and L denoting low-pass zero-phase non-causal filters based on IIR filters to prevent overlearning,
c) Q = 1 and L being an FIR filter (in some research groups also known as “wave” and/or “non-local”

control law [1]).

Probably the most significant obstacle in deploying (2) is the lack of effective recipes to select and
tune those filters. At the same time a majority of theoretical analyses and stability proofs as well as
numerical demonstrations (e.g. [2]) assumes that at least one out of four features of almost any physical
repetitive control system is negligible: uncertainties due to a measurement noise and drift, identification
errors, saturation on the plant side, and a repetitive disturbance. One of the consequences is limited
applicability of those results in real systems. A practical ILC solution should address at least one
common consequence of the above features – a non-zero steady state error in the pass to pass direction.
The integration introduced by (1) may then in the long run have a destabilizing impact. That is why
many solutions try to robustify the system by applying filters aimed to prevent overlearning in the upper
frequency band, i.e. to stop integral action for those frequencies [3–5]. The main problem with those
approaches is that due to practicalities, such as limited resources of microcontrollers, the attenuation in
the stop band may be not sufficient to ensure stable operation in the long time horizon, e.g. typically tens
of millions or even more than one hundred million repetitions in power electronic converters. The task
of stabilizing the system becomes even more challenging if a repetitive external disturbance non-additive
to the controlled output is anticipated to enter a given system. Such disturbances are inevitable in power
electronic converters – usually in the form of load current. Moreover, it is often hard to determine the
upper band of such an external disturbance, e.g. for a diode rectifier it changes notably with the rectifier’s
inductance.
To the best of the authors’ knowledge, there is still some (if not plenty of) room for computational intel-
ligence techniques in the iterative learning control field. Currently there is only one surefire way, namely
the forgetting factor, to tackle the overlearning phenomenon in uncertain real-life systems. Obviously,
this means that the pure integrator in the k-direction is replaced with the first order lag element, which in
turn implies that, depending on the severity of the system uncertainties and the resulting minimum pace
of forgetting, some or even most of the desired properties of the ILC scheme are lost [6]. Alternatively,
it is also possible to include a penalty for control signal dynamics as in [7].



Table I: Selected parameters of the model

Component/Parameter Description/Value
LC output filter 300 µH, 160 µF, Rf = 0.6Ω
Resonant frequency 726 Hz
Critical damping resistance Rcrit = 2.74Ω (highly underdamped)
Reference output voltage f ref = 50 Hz, U ref

RMS = 230 V, sinusoidal
Sampling time Ts = 100 µs (α = 200 points per pass)
Measurement noise 3% of 100 A or 325 V (band-limited white noise with 95% of

its samples within the range)
Load-1 Resistive: 4 kW
Load-2 Diode rectifier: 500 µH, 3 mF, 6 kW, crest factor of ca. 2.5
Closed-loop system damping 3 times higher than in the open-loop system
Identified filter resistance R̂f = 0.25Rf (significant identification error assumed to high-

light dynamics of the repetitive part)
Number of hidden neurons N = 7
Type of neurons tansig (excl. the output purelin neuron)
Training method type trainlm, trainrp, traincgp, trainoss, trainbfg, etc.
Learning parameters Default settings, except net.trainParam.epochs=1 for

all traning methods and net.trainParam.lr=200 for
traingd, traingdm, traingda and traingdx; also
net.divideFcn=’dividetrain’ always holds, which as-
signs all targets to the training set.

Weight constraints Yes, in the interval [-30,30].

Local, non-local and global update rules
Reported ILC laws could be categorized into three groups: local, non-local and global. The very basic
update law (1) is of local type – it uses only a single value of control error from the previous pass to
update the current value of control signal. The control laws that incorporate any filtering in the along
the pass direction become non-local. Their non-locality comes from the fact that more than one value of
control error from the previous pass is used to update the current value of control signal. It seems that the
members of these two groups, despite some formal proofs of their stability, are bound to be robustified in
practice by introducing the forgetting factor. This equally applies to classic laws as well as to repetitive
neurocontrollers proposed by other teams. For example, the practical implementation of the non-local
training rule developed in [8] also includes the above-mentioned forgetting mechanism [9].
There is one recently proposedmember of the third group that employs a global update rule – the repetitive
neurocontroller [10, 11]. The solution is distinct from non-local ones in that it uses all values of control
error from the previous pass to update current control signal sample. Moreover, this algorithm is global
in terms of the objective function used in the definition of the update law, namely the mean squared
control error calculated for the entire pass. The repetitive control task at hand has then been rearranged
to pose a dynamic optimization problem. In consequence, gradient-based training algorithms developed
for feedforward neural networks may serve as potential candidates to provide the iterative learning rule.
It has been decided not to interfere in the already established nomenclature [1] and to keep the non-local
group as it is. However, it should be clarified that the members of the non-local group use strictly local
objectives when defining a control law – even if the length of the filter is equal to the length of the whole
pass.
It is worth noticing that online trained neurocontrollers are widely discussed within the context of non-
repetitive control systems and various motion control systems are reported [12–16]. However, there are
few attempts to reformulate these algorithms to make them suitable within the context of repetitive control
in power electronics and drives. These attempts focus on incorporating B-spline networks with non-local
learning rules as reported in [9].

Feedforward neural network based repetitive controller
The developed repetitive neurocontroller [10, 11] for a constant-amplitude constant-voltage true sine
inverter is sketched in Fig. 1. The overall control system contains two DFF paths, the classic one in the
p-direction (the along the pass direction) and the novel one in the k-direction [17]. No low-pass filtering
is required to robustify this control scheme. Also no forgetting factor is introduced in the global update



rule. For the purpose of controlling the output voltage of a CACF VSI, the following cost function is used

E
α,k2
ANN (k) =

k2
2

2

α∑
p=1

(
uref

C (p) − um
C (k, p)

)2
, (3)

where uref
C is the reference voltage, um

C denotes the measured output filter capacitor voltage and k2 is the
error scaling factor. The functional (3) should be seen as a function of the neural weights

E
α,k2
ANN (k) = EANN(w(1) (k),w(2) (k)) (4)

and the training algorithm is employed to continuously solve the dynamic optimization problem (DOP)
of the form:

reduce iteratively
w(1),w(2)

EANN(w(1) (k),w(2) (k))

subject to: system nonlinearities and uncertainties,

system nonstationarity,

N = const,
constrained weight space ,

(5)

where N is the number of hidden neurons (here organized into a single layer). The resulting output signal
of the neural network is summed with the non-repetitive path – here a reference feedforward (RFF) plus
a full state feedback (FSF) plus a disturbance feedforward (pDFF) – to produce reference signal for the
pulse width modulator (PWM).
As the proposed neurocontroller acts only in the k-direction, it cannot shape the dynamics of the response
in the p-direction. The plant being an RLC series circuit is itself stable; however due to the highly
underdamped natural characteristics of the plant (compare Rf with Rcrit in Tab. I) the above-mentioned
RFF+FSF+DFF non-repetitive controller acting in the p-direction is needed to shape the response in a
sample-by-sample manner. For the purpose of this study, the FSF has been implemented to increase
damping 3 times, i.e. FSF gains k11 and k12 have been determined using the pole placement procedure
to shift closed-loop poles 3 times deeper into the left-half s-plane in respect to open-loop poles. This
produces control signal

uFSF = −(k11imL + k12um
C ) (6)

additive to the feedforward neural network repetitive controller (FFNNRC) output signal. Also, the
standard RFF path

uRFF = (1 + k12)uref
C (7)

is introduced to give a unity gain for the zero frequency [18]. Finally, the disturbance static feedforward
(pDFF) path is included to compensate the resistive voltage drop (for the zero frequency) [19]

uDFF = (R̂f + k11)imload, (8)

where R̂f is the identified resistance of the output filter and imload denotes the measured load current. A
relatively high identification error is assumed in this study (R̂f = 0.25Rf) to accentuate the influence of
the repetitive controller by producing a more significant control error for the FFNNRC and as a result to
make the case scenario more illustrative. The resulting control signal

uPWM = uFFNN + uRFF + uFSF + uDFF︸                  ︷︷                  ︸
unonRC

(9)

passed to the modulator acts simultaneously in the along the pass direction and the pass to pass direction.
The FFNN based approach to repetitive control gives a significant flexibility not present in the classic ILC
scheme in terms of the controller’s input signal selection. The minimal implementation requires a time
base generator (TBG) signal to be passed to the FFNN. This signal transforms the p-direction control
signal synthesis problem into a function approximation one; however, the minimal realization has three
major drawbacks:



(a) N = 17 hidden neurons

iteration number   k     (50 iterations = 1 second)

0 100 200 300 400 500 600

R
M

S
E

 [
%

]

0

2

4

6

8

10

350 360  

1

2

3

4

only p-direction DFF (pDFF) [blue]

p- and k-direction DDFF [green]

(b) N = 7 hidden neurons

iteration number   k     (50 iterations = 1 second)

0 100 200 300 400 500 600

R
M

S
E

 [
%

]

0

2

4

6

8

10

350 360  

1

2

3

4

only p-direction DFF (pDFF) [blue]

p- and k-direction DDFF [green]

Fig. 2: Comparison of the root mean square error (RMSE) decay rates for the Levenberg–Marquardt BP (trainlm)
in the case of the classic disturbance feedforward and the novel disturbance dual feedforward.

(a) Bayesian regularization (trainbr)

iteration number   k     (50 iterations = 1 second)

0 100 200 300 400 500 600

[%
]

0

2

4

6

8

10

noise RMS [magenta]

RMSE (error RMS) [blue]

(b) Scaled Conjugate Gradient (trainscg)

iteration number   k     (50 iterations = 1 second)

0 100 200 300 400 500 600

[%
]

0

2

4

6

8

10

noise RMS [magenta]

RMSE (error RMS) [blue]

Fig. 3: Undesired transient states (emphasized using red frames) caused by the regularization mechanism in
trainbr, and inconsistent behaviour of trainscg despite identical load variations at time instances 50 s and 450 s
– the algorithm failed to track the optimum after the first change in load type.

a) the number of neurons has to be relatively high (ca. 20) to enable effective approximation of control
signal needed to reject nonlinear load currents that usually do not resemble in shape the TBG signal;
and this is an online trained neural network, thus maintaining a low computational burden of the
algorithm, which grows with the number of neurons, is of paramount importance here;

b) the convergence rate is weakened due to the lack of any plant related information at the neural network
inputs;

c) the number of neurons is a trade-off between a precise control signal shaping for significantly nonlinear
loads and an absence of excessive overlearning for linear loads and no-load conditions; the minimal
realisation makes working out this trade-off very challenging and the quality of the output voltage has
to be compromised.

A dynamic response in the k-direction improves and the number of neurons can be significantly reduced
after additionally introducing the load current signal at the inputs of the neurocontroller. This is illustrated
in Figs. 2a and 2b. The name disturbance dual feedforward (DDFF) is used throughout the paper to
highlight that the load current signal is exploited in both directions.

Choosing the right iterative DOP-capable learning algorithm
The main goal of the research reported in this paper is to identify learning algorithms for a real-time
implementation. Initially, the Levenberg–Marquardt backpropagation (BP) method was employed and
identified as being able to ensure fast error convergence and high voltage quality at a steady state. However,
there exist less computationally demanding learning algorithms such as the resilient backpropagation or
Broyden–Fletcher–Goldfarb–Shanno quasi-Newton algorithm. Taking into account that the performance
of any optimization tool is always problem specific, the quality of the output waveform during transients
and at steady states ought to be investigated in the specific system before selecting candidates for practical



Table II: Learning algorithms comparison and assessment

Algorithm Acronym Exec. time∗ Transients Steady states
Levenberg–Marquardt BP trainlm 41.2 s ++ +
Resilient BP (RPROP) trainrp 21.8 s + ++
One-step secant BP trainoss 24.8 s ++ ++

BFGS quasi-Newton BP trainbfg 24.0 s ++ +
Gradient descent (GD) traingd 22.4 s -+ -+
GD with momentum traingdm 22.0 s -+ -+

GD with momentum & adaptive LR traingdx 24.0 s -+ -+
GD with adaptive LR traingda 22.9 s -+ -+
Bayesian regularization trainbr 48.2 s - +

Scaled Conjugate Gradient (CG) trainscg 28.9 s - +
Polak–Ribiére CG (Conjugate Grad.) traincgp 24.0 s + +

Fletcher–Powell CG traincgf 24.8 s + ++
CG with Powell/Beale restarts traincgb 24.0 s + ++
∗for 600 calls using Intel® CoreTM i5-3210M CPU @ 2.50GHz

(a) trainlm vs. trainrp

iteration number   k     (50 iterations = 1 second)

0 100 200 300 400 500 600

R
M

S
E

 [
%

]

0

2

4

6

8

10

350 360  

1

2

3

4

trainlm [blue]

trainrp [green]

(b) trainlm vs. trainoss

iteration number   k     (50 iterations = 1 second)

0 100 200 300 400 500 600

R
M

S
E

 [
%

]

0

2

4

6

8

10

350 360  

1

2

3

4

trainlm [blue]

trainoss [green]

Fig. 4: Root mean square error decay rate for Levenberg–Marquardt BP (trainlm), resilient BP (trainrp) and
one-step secant BP (trainoss) algorithms (Load-1 and Load-2 are switched cyclically).

(a) trainoss vs. traingd

iteration number   k     (50 iterations = 1 second)

0 100 200 300 400 500 600

R
M

S
E

 [
%

]

0

2

4

6

8

10

350 360  

1

2

3

4

trainoss [blue]

traingd [green]

(b) trainoss vs. traingdx

iteration number   k     (50 iterations = 1 second)

0 100 200 300 400 500 600

R
M

S
E

 [
%

]

0

2

4

6

8

10

350 360  

1

2

3

4

trainoss [blue]

traingdx [green]

Fig. 5: Root mean square error decay rate for one-step secant BP (trainoss), gradient descent (traingd) and
gradient descent with momentum and an adaptive learning rate (traingdx) algorithms (Load-1 and Load-2 are
switched cyclically).



implementation. It should be stressed that these learning algorithms are to be used in a noisy environment
and the optimization task is of a dynamic type. The latter is due to variable load conditions. There is a rich
variety of learning algorithms designed for FFNNs training. A majority of them was originally developed
as static optimization problem solvers. Nevertheless, most of them can be used in dynamic optimization
problems without the need of any alterations. Over a dozen off-the-shelf training algorithms available in
the Neural Network Toolbox from MathWorks [20] are tested and compared here. The comparison is by
no means a definite one – it refers to only one plant and involves visual assessment of the performance
of the control system. Consequently, only an exemplary decision process is demonstrated and several
recommendations are made.
Selected parameters of the model are collated in Tab. I. It should be noted that all measurements are
corrupted by noise. This makes the search task challenging due to the jagged optimization landscape.
Moreover, the task at hand is of a dynamic type, i.e. each training vector (each pass) is presented to
the controller only once (net.trainParam.epochs=1) and then is forgotten completely. The training
algorithm directly shapes the dynamics of the controller in the k-direction. Even at a steady state of
the system the optimisation landscape is still dynamic because of the measurement noise. There are
several requirements for the weight adaptation mechanism, i.e. the learning algorithm, to be met in order
to facilitate correct operation of the controller under variable load conditions and in the presence of a
measurement noise:

a) the search algorithm should be relatively noise-immune – the effective operation under at least 3 %
unfiltered measurement noise has to be possible and higher noise levels (up to 10 %) should not render
the search impossible;

b) the algorithm should not stick to an outdated optimum after an abrupt load change, i.e. should be able
to track sudden movements of the optimum;

c) a transition to the new optimal control signal should be smooth to ensure acceptable output voltage
quality (uC) during transients;

d) the algorithm should generate consistent results, i.e. a given change in load conditions should always
yield similar behaviour of the system.

The test scenario assumes abrupt switchings between two load types: Load-1 and Load-2 (see Tab. I
for details). The sequence is as follows: Load-1 in the time interval 0–50 s, Load-2 in 50–350 s,
Load-1 in the interval 350–450 s, Load-2 in 450–550 s, and at the end again Load-1. If voltage quality
deteriorates significantly, i.e. beyond noise level, from pass to pass within intervals, this is caused
solely by the learning algorithm itself. Algorithms that offer a near-monotonic decay of the RMSE are
preferable. The consistency of the controller responses is verified using multiple (>3) re-evaluations
in the above-mentioned test scenario. All noise generators have random seeds (rng(’shuffle’)) and
also initial weights are not reproduced from test to test due to the random element of Nguyen-Widrow
initialization [21].
Practical implementation of any online trained neurocontroller requires weights to be constricted within a
certain range; thus, a mechanism that can effectively prevent weights from overflowing is indispensable.
The training with Bayesian regularisation (trainbr) introduces soft limits on weights; however, the
controller equipped with this algorithm tends to produce undesirable transients illustrated in Fig. 3a. In
the case of all other algorithms discussed here, hard limits have been imposed on weights. Also the
controller incorporating the scaled conjugate gradient method (trainscg) failed to produce reproducible
results in a noisy environment, which is illustrated in Fig. 3b. The rest of the tested algorithms perform
consistently throughout experiments and selected observed features are summarized in Tab. II.
Often the RPROP is suggested as the first-hand choice for on-line trained non-repetitive neurocon-
trollers [22] if the cost function applied is just the squared current control error sample, i.e. weights are
updated after each presentation of a single control error sample (incremental training). The RPROP is
reported as providing learning spread equally over the network and, thanks to adaptation affected only
by the sign of the partial derivative, also less prone to fail due to environment noisiness. It also has the
lowest computational complexity. However, other algorithms such as the one-step secant BP (see Fig. 4a)
or the BFGS quasi-Newton BP have similar execution time and manifest fast convergence when applied
to the discussed control task. The gradient descent methods struggle to operate effectively in noisy
measurement environment (see Tab. I for the specific noise level) as demonstrated in Fig. 5. All methods
tested here are configured as batch ones, i.e. errors are accumulated and all of the weights’ updates
are made at once at the end of a pass. Further study will also include sequential learning algorithms.
However, already at this point it can be concluded that as far as the repetitive neurocontroller with the
global update law is considered there is no definitive winner. The commonly recommended RPROP
has the lowest computational complexity but can be surpassed in terms of convergence rate, e.g, by the
one-step memory-less secant method or other full gradient based (in contrast to only gradient sign based)
methods as shown in Fig. 4. This may suggest that the related dynamic optimization landscape is only
moderately challenging and standard learning methods are sufficient to solve the relevant DOP (Fig. 6).



(a) Output capacitor voltage and PWM converter
average voltage (for trainoss)

0 50 100 150 200

-400V

-325V

0

325V

400V

u
C
 [V]

u
VSI

avg [V]

(b) Output capacitor voltage and PWM converter
average voltage (for trainrp)

0 50 100 150 200

-400V

-325V

0

325V

400V

u
C
 [V]

u
VSI

avg [V]

(c) Control error (for trainoss)

0 50 100 150 200

-5%

0

5%

e
uC

 [%]

(d) Control error (for trainrp)

0 50 100 150 200

-5%

0

5%

e
uC

 [%]

(e) Control signal components and load current (for
trainoss)

sample number  p

0 50 100 150 200

-400V

-325V

-50V

0

50V

325V

400V

-100A

0

100A

u
FFNN

 [V]

u
nonRC

 [V]

i
load

 [A]

(f) Control signal components and load current (for
trainrp)

sample number  p

0 50 100 150 200

-400V

-325V

-50V

0

50V

325V

400V

-100A

0

100A

u
FFNN

 [V]

u
nonRC

 [V]

i
load

 [A]

(g) Evolution of the output voltage waveform after
connecting the diode rectifier (for trainoss)

0
4

iteration number  k

 k-direction

pass to pass direction

8
12

16
20 (0.4 s)

sample number  p

 p-direction

along the pass direction

250

200

150

100

50

0

-400

-200

0

200

400

u
C

 [
V

]

(h) Evolution of the output voltage waveform after
connecting the diode rectifier (for trainrp)

0
4

iteration number  k

 k-direction

pass to pass direction

8
12

16
20 (0.4 s)

sample number  p

 p-direction

along the pass direction

250

200

150

100

50

0

-400

-200

0

200

400

u
C

 [
V

]

Fig. 6: Steady-state waveforms (a)-(f) under diode rectifier load for two algorithms comparable in terms of their
performance and the evolution of output voltage (g)-(h) after switching from resistive load to diode rectifier load.



(a) 7 % measurement noise

iteration number   k     (50 iterations = 1 second)

0 100 200 300 400 500 600

[%
]

0

2

4

6

8

10

noise RMS [magenta]

RMSE (error RMS) [blue]

(b) 10 % measurement noise

iteration number   k     (50 iterations = 1 second)

0 100 200 300 400 500 600

[%
]

0

2

4

6

8

10

noise RMS [magenta]

RMSE (error RMS) [blue]

(c) 7 % measurement noise

0 50 100 150 200

-5%

0

5%

e
uC

 [%]

(d) 10 % measurement noise

0 50 100 150 200

-5%

0

5%

e
uC

 [%]

Fig. 7: Evolution of root mean squared error during transients and steady state performance of the converter under
heavy noise conditions – the steady state error along the pass recorded at the time instance of 300 s (the diode
rectifier load).

Noise robustness of the repetitive neurocontroller
The proposed k-direction neurocontroller needs a stable sufficiently damped plant to be plugged into it.
The p-direction controller designed using the pole placement method determines the level of damping in
the closed-loop system. The stability of the overall scheme then comes from the convergent optimization
algorithm. The cost function as well as FSF are here the crucial elements shaping the noise robustness
of the system. However, a more serious noise may require the p-direction controller to be retuned and
this in turn affects the k-direction controller that should also be readjusted, i.e. the learning rate should
be modified to work out a new compromise between the responsiveness of the controller and the steady
state performance. The k-direction controller has a strong averaging capability due to the character of
the cost function (3), which is desirable in the case of white noise. On the other hand, the p-direction
controller is quite sensitive to noise if its poles are moved far to the left, i.e. high FSF controller gains are
introduced to get strong damping. The highly damped plant makes the optimization task less challenging
and hence results in faster convergence – but only if subject to no measurement noise. It is hard to
propose a definitive analysis to determine operational noise limits. Nevertheless it has been tested that
the dynamic neural optimization is still effective under severe noise of 10 % (Figs. 7b and 7d), which
is way above noise levels encountered in practical converters. No measurement signal conditioning is
introduced in any of the discussed case scenarios. Clearly, in a steady state the RMSE can drop far below
the RMS of noise (see e.g. Fig. 7a or Fig. 7b); this happens due to the low-pass characteristics of the
plant itself as well as thanks to the averaging nature of the employed functional. Further study will also
include a methodical comparison of levels of immunity against extreme cases of noise for all mentioned
algorithms.

Conclusion
A novel robust repetitive neurocontroller with a truly global iterative learning law has been proposed. The
advantages of a recently developed disturbance dual feedforward concept have been briefly summarised.
The performance of the controller has been studied within the context of a pure sine wave inverter
and recommendations regarding training algorithms have been made. It has been demonstrated that
the resilient backpropagation algorithm – a frequent winner in the case of non-repetitive online-trained
neurocontrollers – is not a definitive winner in the case of the repetitive neurocontroller. Other learning
algorithms can operate with similar effectiveness in terms of execution time and offer potentially faster
convergence rates in this particular application. Important aspects for future study will include the
identification of operational limits in unusually noisy environments and an experimental verification of
the concept.



References
[1] Cichy, B., Galkowski, K., Rogers, E., and Kummert, A.: Control law design for discrete linear

repetitive processes with non-local updating structures, Multidimensional Systems and Signal
Processing, vol. 24, no. 4, 2013, pp. 707–726.

[2] Cichy, B., Galkowski, K., and Rogers, E.: 2D systems based robust iterative learning control using
noncausal finite-time interval data, Systems & Control Letters, vol. 64, no. 0, 2014, pp. 36–42.

[3] Longman, R. W.: Iterative/repetitive learning control: learning from theory, simulations, and
experiments, Encyclopedia of the Sciences of Learning, Springer US, 2012, pp. 1652–1657.

[4] Elci, H., Longman, R., Phan, M., Juang, J.-N., and Ugoletti, R.: Simple learning control made
practical by zero-phase filtering: applications to robotics, IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, vol. 49, no. 6, 2002, pp. 753–767.

[5] Shi, Y.: Robustification in repetitive and iterative learning control, PhD thesis, Columbia Univer-
sity, USA, 2013.

[6] Verwoerd,M. H. A.: Iterative learning control – a critical review, PhD thesis, University of Twente,
The Netherlands, 2005.

[7] Ufnalski, B. and Grzesiak, L. M.: A performance study on synchronous and asynchronous update
rules for a plug-in direct particle swarm repetitive controller, Archives of Electrical Engineering,
vol. 63, no. 4, 2014, pp. 635–646.

[8] Chen, Y. Q., Moore, K., and Bahl, V.: Learning feedforward control using a dilated B-spline
network: frequency domain analysis and design, IEEE Transactions on Neural Networks, vol. 15,
no. 2, 2004, pp. 355–366.

[9] Deng, H., Oruganti, R., and Srinivasan, D.: Neural controller for UPS inverters based on B-spline
network, IEEE Transactions on Industrial Electronics, vol. 55, no. 2, 2008, pp. 899–909.

[10] Ufnalski, B. and Grzesiak, L. M.: Artificial neural network based voltage controller for the sin-
gle phase true sine wave inverter – a repetitive control approach, Electrical Review (Przegląd
Elektrotechniczny), vol. 89, no. 4, 2013, pp. 14–18.

[11] Ufnalski, B. and Grzesiak, L. M.: Particle swarm optimization of an online trained repetitive
neurocontroller for the sine-wave inverter, 39th IECON Annual Conference of the IEEE Industrial
Electronics Society, 2013, pp. 6003–6009.

[12] Kaminski, M., Orlowska-Kowalska, T., and Szabat, K.: Neural speed controller based on two state
variables applied for a drive with elastic connection, 16th International Power Electronics and
Motion Control Conference and Exposition (PEMC), 2014, pp. 610–615.

[13] Orlowska-Kowalska, T. and Kaminski, M.: Adaptive Neurocontrollers for Drive Systems: Basic
Concepts, Theory and Applications, Advanced and Intelligent Control in Power Electronics and
Drives, ed. by Orlowska-Kowalska, T., Blaabjerg, F., and Rodriguez, J., vol. 531, Studies in
Computational Intelligence, Springer International Publishing, 2014, pp. 269–302.

[14] Ufnalski, B., Grzesiak, L. M., and Kaszewski, A.: Advanced Control and Optimization Techniques
in AC Drives and DC/AC Sine Wave Voltage Inverters: Selected Problems, Advanced and Intelli-
gent Control in Power Electronics and Drives, ed. by Orlowska-Kowalska, T., Blaabjerg, F., and
Rodriguez, J., vol. 531, Studies in Computational Intelligence, Springer International Publishing,
2014, pp. 303–333.

[15] Pajchrowski, T. and Zawirski, K.: Application of artificial neural network for adaptive speed control
of PMSM drive with variable parameters, COMPEL: The International Journal for Computation
and Mathematics in Electrical and Electronic Engineering, vol. 32, no. 4, 2013, pp. 1287–1299.

[16] Ufnalski, B. and Grzesiak, L. M.: Particle swarm optimization of artificial-neural-network-based
on-line trained speed controller for battery electric vehicle, Bulletin of the Polish Academy of
Sciences: Technical Sciences, vol. 60, no. 3, 2012, pp. 661–667.

[17] Ufnalski, B.: Repetitive Neurocontroller with Disturbance Feedforward, 2014, url: www.mathwo
rks.com/matlabcentral/fileexchange/47867-repetitive-neurocontroller-with-
disturbance-feedforward.

[18] Franklin, G., Powell, D., andWorkman, M.:Digital control of dynamic systems, 3rd, Prentice Hall,
1997.

[19] Kaszewski, A., Ufnalski, B., and Grzesiak, L. M.: An LQ controller with disturbance feedfor-
ward for the 3-phase 4-leg true sine wave inverter, IEEE International Conference on Industrial
Technology (ICIT), 2013, pp. 1924–1930.

[20] MathWorks: Neural Network Toolbox (MATLAB/Simulink), 2015, url: www.mathworks.com/he
lp/nnet.

[21] MathWorks: Nguyen-Widrow layer initialization function, 2015, url: www.mathworks.com/hel
p/nnet/ref/initnw.html.

[22] Pajchrowski, T., Zawirski, K., and Nowopolski, K.: A neural speed controller trained on-line by
means of modified RPROP algorithm, IEEE Transactions on Industrial Informatics, vol. 11, no. 2,
2015, pp. 560–568.

www.mathworks.com/matlabcentral/fileexchange/47867-repetitive-neurocontroller-with-disturbance-feedforward
www.mathworks.com/matlabcentral/fileexchange/47867-repetitive-neurocontroller-with-disturbance-feedforward
www.mathworks.com/matlabcentral/fileexchange/47867-repetitive-neurocontroller-with-disturbance-feedforward
www.mathworks.com/help/nnet
www.mathworks.com/help/nnet
www.mathworks.com/help/nnet/ref/initnw.html
www.mathworks.com/help/nnet/ref/initnw.html

