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Objective
Our main objective is to control the repetitive
process employing an iterative learning algorithm
with a global update law. This is to produce the
innately robust neurocontroller. The main
motivation here is the lack of an innate robust-
ness in classic ILC systems that are based on local
or non-local (but not global) update rules. Sev-
eral training algorithms are to be scrutinized and
recommendations are to be made.

Dynamic optimization

Reduce iteratively
w(1),w(2)

EANN(w(1)(k), w(2)(k))

subject to: system nonlinearities,

system uncertainties,

system nonstationarity,

actuator delay,

N = const,

constrained weight space,

repetitive reference,

repetitive disturbance.
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Figure 1: Schematic diagram of the proposed repetitive neurocontrol system with a disturbance dual feedforward path.
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Figure 2: Steady-state waveforms (output capacitor voltage, PWM converter average voltage, control signal components and load
current) under diode rectifier load and the evolution of output voltage after switching from resistive load to diode rectifier load.

Results
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Figure 3: Comparison of the root mean square error (RMSE)
decay rates for the Levenberg–Marquardt BP (trainlm) in the
case of the classic disturbance feedforward and the novel distur-
bance dual feedforward (N = 17 and N = 7 hidden neurons).
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Figure 4: Undesired transient states (emphasized using red
frames) caused by the Bayesian regularization mechanism in
trainbr, and inconsistent behaviour of trainscg despite
identical load variations at time instances 50 s and 450 s.
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Figure 5: Root mean square error decay rate for Levenberg–
Marquardt BP (trainlm), resilient BP (trainrp) and one-step
secant BP (trainoss) algorithms.
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Figure 6: Root mean square error decay rate for one-step se-
cant BP (trainoss), gradient descent (traingd) and gra-
dient descent with momentum and an adaptive learning rate
(traingdx) algorithms.

Algorithm Acronym Exec. time∗ Transients Steady states
Levenberg–Marquardt BP trainlm 41.2 s ++ +
Resilient BP (RPROP) trainrp 21.8 s + ++
One-step secant BP trainoss 24.8 s ++ ++

BFGS quasi-Newton BP trainbfg 24.0 s ++ +
Gradient descent (GD) traingd 22.4 s -+ -+
GD with momentum traingdm 22.0 s -+ -+

GD with momentum & adaptive LR traingdx 24.0 s -+ -+
GD with adaptive LR traingda 22.9 s -+ -+
Bayesian regularization trainbr 48.2 s - +

Scaled Conjugate Gradient (CG) trainscg 28.9 s - +
Polak–Ribiére CG (Conjugate Grad.) traincgp 24.0 s + +

Fletcher–Powell CG traincgf 24.8 s + ++
CG with Powell/Beale restarts traincgb 24.0 s + ++

∗for 600 calls using Intel R© CoreTM i5-3210M CPU @ 2.50GHz

Conclusions

Repetitive processes can be effectively controlled
using dynamic optimization algorithms such as
iteratively trained artificial neural networks. It is ad-
vantageous to introduce the disturbance feedfor-
ward path also in the pass to pass direction. Recom-
mendations regarding training algorithms are made.
It is demonstrated that the resilient backpropa-
gation algorithm – a frequent winner in the case
of non-repetitive online-trained neurocontrollers – is
not a definitive winner in the case of the repetitive
neurocontroller.

Source code

The complete numerical model is available at MAT-
LAB Central as “Repetitive Neurocontroller with Dis-
turbance Feedforward”.
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